Description

Flamma® Fluors 581 Sulfo-NHS ester is a reactive form of orange fluorescent dye induced from benzindocyanine structure and used to generate a stable fluorescence signal in bioimaging. The maxima of Ex/Em values are at 578/593 nm, similar to that of Alexa 594 and DyLight 594. Flamma 581 might be excited using 561, 568 or 578 nm laser lines and displays excellent optical property. Flamma 581 dyes can be conjugated to low-abundance biomolecules with great sensitivity and high molar ratios, allowing sensitive detection. Sulfo-NHS esters have higher water solubility than NHS esters, thus they do not need organic co-solvent and readily react with amine-modified oligonucleotides or amino groups of proteins, i.e. the ε-amino groups of lysine or the amine terminus of nucleotides to form a stable amide bond between dye and the biomolecule. We offer Flamma Fluors 581 Sulfo-NHS ester for labeling of antibodies, peptides, proteins, ligands, and amplification substrates optimized for cellular labeling and detection. 

Specifications

Fluorophore: Flamma® Fluors 581

Reactive group: Sulfo-NHS ester

Excitation/Emission Max.(nm): 578/596

Spectrally similar dyes: Alexa594, DyLight593

Extinction coefficient: ≥ 109,000 cm-1M-1

CF280: 0.1

Appearance: Purple Solid

Molecular Weight: 1096.20 g/mol

Solubility: DMF, DMSO

Storage conditions: -20 ℃, protect from light



Citation & Reference

1. Xu, Peisheng. Zwitterionic chitosan derivatives for pH-sensitive stealth coating. Biomacromolecules 11.9 (2010): 2352-2358.


2. Ibrahim, Basma M. A strategy to deliver genes to cystic fibrosis lungs: a battle with environment. Journal of controlled release 155.2 (2011): 289-295.


3. Oh, Keun Sang. Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system. International journal of nanomedicine 9 (2014): 2955.


4. Yhee, Ji Young. Tumor-targeting transferrin nanoparticles for systemic polymerized siRNA delivery in tumor-bearing mice. Bioconjugate chemistry 24.11 (2013): 1850-1860.


5. Yoon, Hong Yeol. Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Scientific reports 4 (2014).


6. Ryu, Ju Hee. Early diagnosis of arthritis in mice with collagen?induced arthritis, using a fluorogenic matrix metalloproteinase 3–specific polymeric probe. Arthritis & Rheumatism 63.12 (2011): 3824-3832.


7. Hollis, Christin P. In vivo investigation of hybrid paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics. Pharmaceutical research 31.6 (2014): 1450-1459.


8. Koo, Heebeom. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 33.12 (2012): 3485-3493.


9. Zhu, Lei. Real-time monitoring of caspase cascade activation in living cells. Journal of controlled release 163.1 (2012): 55-62.


10. Yoon, Hong Yeol. Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting. Journal of Controlled Release 172.3 (2013): 653-661.


11. Yhee, Ji Young. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release 198 (2015): 1-9.


12. Park, Jin Woo. Wide-Ranged Fluorescent Molecular Weight Size Markers for Electrophoresis. Bulletin of the Korean Chemical Society 34.1 (2013): 29-30.


13. Huang, Xinglu. Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broad?Spectrum Nanoquencher. Angewandte Chemie International Edition 51.7 (2012): 1625-1630. 

OPTION

Added cart

장바구니 아이콘

We put the items
in the shopping cart.